Given an array of n integers nums and a target, find the number of index triplets i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
For example, given nums = [-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1][-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime? 这道题是3Sum问题的一个变形,让我们求三数之和小于一个目标值,那么最简单的方法就是穷举法,将所有的可能的三个数字的组合都遍历一遍,比较三数之和跟目标值之间的大小,小于的话则结果自增1,参见代码如下:
解法一:
// O(n^3)class Solution {public: int threeSumSmaller(vector & nums, int target) { int res = 0; sort(nums.begin(), nums.end()); for (int i = 0; i < int(nums.size() - 2); ++i) { int left = i + 1, right = nums.size() - 1, sum = target - nums[i]; for (int j = left; j <= right; ++j) { for (int k = j + 1; k <= right; ++k) { if (nums[j] + nums[k] < sum) ++res; } } } return res; }};
题目中的Follow up让我们在O(n^2)的时间复杂度内实现,那么我们借鉴之前那两道题和中的方法,采用双指针来做,这里面有个trick就是当判断三个数之和小于目标值时,此时结果应该加上right-left,以为数组排序了以后,如果加上num[right]小于目标值的话,那么加上一个更小的数必定也会小于目标值,然后我们将左指针右移一位,否则我们将右指针左移一位,参见代码如下:
解法二:
// O(n^2)class Solution {public: int threeSumSmaller(vector & nums, int target) { if (nums.size() < 3) return 0; int res = 0, n = nums.size(); sort(nums.begin(), nums.end()); for (int i = 0; i < n - 2; ++i) { int left = i + 1, right = n - 1; while (left < right) { if (nums[i] + nums[left] + nums[right] < target) { res += right - left; ++left; } else { --right; } } } return res; }};
类似题目:
参考资料: